https://biomadscientist.tistory.com/47 [오일석 기계학습] 2.2 수학 - 확률과 통계 - 곱 규칙과 전확률 규칙 기계학습이 다루는 데이터는 주로 '불확실성'을 가지고있는 실생활로부터 온 데이터들, 따라서 자연스럽게 기계학습 역시 확률과 통계를 잘 활용해야만 좋은 모델을 만들 수 있다. 1. 확률 기초 biomadscientist.tistory.com 이전 포스팅에서 조건부 확률과 결합확률의 곱규칙과 전확률 규칙에 대하여 공부하였다. 이번 포스팅에서는 두 규칙을 이용해 베이즈 정리에 대해 공부해보려 한다. 곱규칙과 전확률 규칙을 이해하지 못한 상태로는 베이즈 정리 이해가 어려울 수 있으니 먼저 이전 포스팅에서 다룬 두 규칙에 대한 이해를 선행한 후에 이 포스팅을 읽기를 추천..
해당 내용을 이해하기 위해서는 기초적인 수준의 조건부 확률, 베이지안 룰, 결합확률변수와 주변확률변수에 대한 이해가 있어야합니다. 1. 결합확률 변수에 대한 강의는 아래 김성범교수님의 강의를 보시거나 https://www.youtube.com/watch?v=niob_ZRZeJs 2. KMOOC에서 여인권교수님의 8주차 강좌를 통해서 결합확률변수와 주변확률변수에 대한 선수지식을 습득하시길 바랍니다. http://www.kmooc.kr/courses/course-v1:SookmyungK+SM_sta_004k+2019_03SM_02/course/ 강좌 | SM_sta_004k | K-MOOC www.kmooc.kr 3. 조건부 확률에 대한 개념이 없다면 주인장의 블로그 글을 참고하시거나 https://biom..
- Total
- Today
- Yesterday
- manim library
- variational autoencoder
- Matrix algebra
- 파이썬
- 기계학습
- manim
- manimtutorial
- 3b1b
- ai인공지능
- 최대우도추정
- MorganCircularfingerprint
- kl divergence
- eigenvector
- MLE
- eigenvalue
- kld
- 오일석기계학습
- MatrixAlgebra
- Manimlibrary
- vae
- 베이즈정리
- 제한볼츠만머신
- 3B1B따라잡기
- 이왜안
- 인공지능
- ai신약개발
- marginal likelihood
- 선형대수
- elementry matrix
- 백준
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |